

Solution**PREBOARD EXAM- 2 2025-26****Class 12 - Mathematics****Section A**

1.

(c) 8**Explanation:**

8

2. **(a) Idempotent****Explanation:**clearly for given matrix $A^2 = A$

Therefore idempotent

3. **(a) $4|A|$** **Explanation:**

$$A = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix}, 2A = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix}$$

$$|2A| = 2^2 |A| = 4 |A|$$

4.

(c) $(1 + \sin 2x) y_1$ **Explanation:**

$$y = e^{\tan x}$$

$$y_1 = \sec^2 x e^{\tan x}$$

$$\Rightarrow \cos^2 x y_1 = e^{\tan x}$$

Again differentiating w.r.t. x we get

$$\cos^2(x) \cdot y_2 - 2 \cos x \sin x y_1 = \sec^2 x e^{\tan x}$$

$$\Rightarrow \cos^2(x) \cdot y_2 = y_1 \sin 2x + y_1.$$

5.

(d) $\frac{\pi}{2}$ **Explanation:**

Let's consider the first parallel vector to be $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$ and second parallel vector be $\vec{b} = (b-c)\hat{i} + (c-a)\hat{j} + (a-b)\hat{k}$

For the angle, we can use the formula $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times |\vec{b}|}$

For that, we need to find the magnitude of these vectors

$$|\vec{a}| = \sqrt{a^2 + b^2 + (c)^2}$$

$$= \sqrt{a^2 + b^2 + c^2}$$

$$|\vec{b}| = \sqrt{(b-c)^2 + (c-a)^2 + (a-b)^2}$$

$$= \sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)}$$

$$\Rightarrow \cos \alpha = \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot ((b-c)\hat{i} + (c-a)\hat{j} + (a-b)\hat{k})}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}}$$

$$\Rightarrow \cos \alpha = \frac{ab - ac + bc - ba + ca - cb}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}}$$

$$\Rightarrow \cos \alpha = \frac{0}{\sqrt{2(a^2 + b^2 + c^2 - ab - bc - ca)} \times \sqrt{a^2 + b^2 + c^2}}$$

$$\Rightarrow \alpha = \cos^{-1}(0)$$

$$\therefore \alpha = \frac{\pi}{2}$$

6.

(d) $\frac{ax^2}{2} + bx$

Explanation:

$$\frac{ax^2}{2} + bx$$

7. (a) $x_1 = 2, x_2 = 6, Z = 36$

Explanation:

We need to maximize the function $z = 3x_1 + 5x_2$

First, we will convert the given inequations into equations, we obtain the following equations: $3x_1 + 2x_2 = 18, x_1 = 4, x_2 = 6,$

$x_1 = 0$ and $x_2 = 0$

Region represented by $3x_1 + 2x_2 \leq 18$

The line $3x_1 + 2x_2 = 18$ meets the coordinate axes at A(6, 0) and B(0, 9) respectively. By joining these points we obtain the line

$3x_1 +$

$2x_2 = 18$

Clearly (0, 0) satisfies the inequation $3x_1 + 2x_2 = 18$. So, the region in the plane which contain the origin represents the solution set of the inequation $3x_1 + 2x_2 = 18$

Region represented by $x_1 \leq 4$:

The line $x_1 = 4$ is the line that passes through C(4, 0) and is parallel to the Y axis. The region to the left of the line $x_1 = 4$ will satisfy the inequation $x_1 \leq 4$

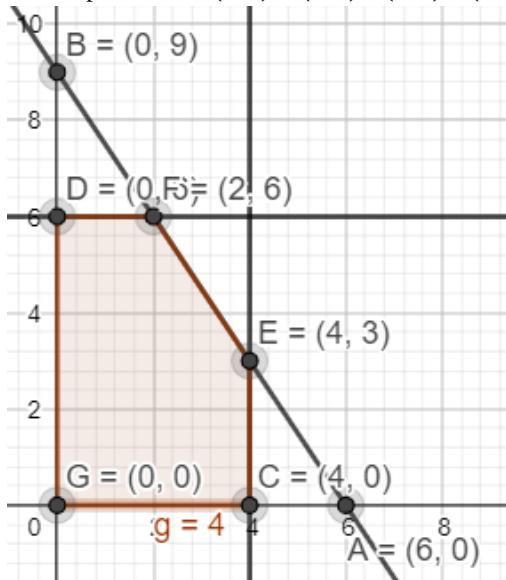
Region represented by $x_2 \leq 6$ The line $x_2 = 6$ is the line that passes through D(0, 6) and is parallel to the x axis. The region below the line $x_2 = 6$ will satisfy the inequation $x_2 \leq 6$.

Region represented by $x_1 \geq 0$ and $x_2 \geq 0$

since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x_1 \geq 0$ and $x_2 \geq 0$

The feasible region determined by the system of constraints, $3x_1 + 2x_2 \leq 18, x_1 \leq 4, x_2 \leq 6, x_1 \geq 0$, and $x_2 \geq 0$, are as follows :

Corner points are O(0, 0), D(0, 6), F(2, 6), E(4, 3) and C(4, 0).



The values of the objective function at these points are given in the following table

Points : Value of Z

O(0, 0) : $3(0) + 5(0) = 0$

$$D(0, 6) : 3(0) + 5(6) = 30$$

$$F(2, 6) : 3(2) + 5(6) = 36$$

$$E(4, 3) : 3(4) + 5(3) = 27$$

$$C(4, 0) : 3(4) + 5(0) = 12$$

We see that the maximum value of the objective function Z is 36 which is at F(2, 6)

8.

(c) $\frac{-3}{2}$

Explanation:

It is given that: If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$,

then:

$$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{0} \cdot \vec{0}$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -\frac{3}{2}$$

9.

(d) $e^x \log \sec x + C$

Explanation:

$$I = \int e^x \{f(x) + f'(x)\} dx, \text{ where } f(x) = \log \sec x$$

$$= e^x f(x) + C = e^x \log \sec x + C$$

10.

(d) [14]

Explanation:

[14]

11. **(a)** a function to be optimized

Explanation:

a function to be optimized

The objective function of a linear programming problem is either to be maximized or minimized i.e. objective function is to be optimized.

12. **(a)** $3, \frac{27}{2}$

Explanation:

It is given that:

$$(2\hat{i} + 6\hat{j} + 27\hat{k}) X (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = \hat{i}(6\mu - 27\lambda) - \hat{j}(2\mu - 27) + \hat{k}(2\lambda - 6) = \vec{0}, \text{ equating the coefficients of } \hat{i}, \hat{j}, \hat{k} \text{ on both sides, we get}$$

$$(6\mu - 27\lambda) = 0, (2\mu - 27) = 0, (2\lambda - 6) = 0.$$

$$\text{solving, we get } \lambda = 3, \mu = \frac{27}{2}$$

13.

(c) $K^{n-1} \text{ Adj. } A$

Explanation:

$\text{Adj. } (KA) = K^{n-1} \text{ Adj. } A$, where K is a scalar and A is a $n \times n$ matrix.

14.

(c) $\frac{14}{17}$

Explanation:

Here, $P(A \cap B) = \frac{7}{10}$ and $P(B) = \frac{17}{20}$,
 $\therefore P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{7/10}{17/20} = \frac{14}{17}$

15. (a) 3, 2

Explanation:

We have, $\left(\frac{d^3y}{dx^3}\right)^2 - 3\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^4 = y^4$
 \therefore Order = 3 and degree = 2

16. (a) $\frac{1}{2}(\vec{a} - \vec{b})$

Explanation:

Given parallelogram OACB such that $\overrightarrow{OC} = \vec{a}$
 $\overrightarrow{AB} = \vec{b}$
 $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$
 $\overrightarrow{OB} = \vec{a} - \overrightarrow{OA}$ ($\because \overrightarrow{BC} = \overrightarrow{OA}$)
 $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$
 $\vec{a} - \overrightarrow{OA} = \overrightarrow{OA} + \vec{b}$
 $\overrightarrow{OA} = \frac{\vec{a} - \vec{b}}{2}$

17.

(c) 3

Explanation:

$$f(x) = \frac{1}{\log|x|}$$

$f(x)$ is not defined for $x = 0, -1, 1$

$\therefore f(x)$ is not continuous at $x = 0, -1, 1$

18.

(c) 13; $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$

Explanation:

$$13; \frac{12}{13}, \frac{4}{13}, \frac{3}{13}$$

If a line makes angles α, β and γ with the axis, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (i)

Let r be the length of the line segment. Then,

$$r \cos \alpha = 12, r \cos \beta = 4, r \cos \gamma = 3 \quad \text{....(ii)}$$

$$\Rightarrow (r \cos \alpha)^2 + (r \cos \beta)^2 + (r \cos \gamma)^2 = 12^2 + 4^2 + 3^2$$

$$\Rightarrow r^2 (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = 169$$

$$\Rightarrow r^2 (1) = 169 \quad [\text{From (i)}]$$

$$\Rightarrow r = \sqrt{169}$$

$$\Rightarrow r = \pm 13$$

$\Rightarrow r = 13$ (since length cannot be negative)

Substituting $r = 13$ in (ii)

We get,

$$\cos \alpha = \frac{12}{13}, \cos \beta = \frac{4}{13}, \cos \gamma = \frac{1}{13}$$

Thus, the direction cosines of the line are

$$\frac{12}{13}, \frac{4}{13}, \frac{1}{13}$$

19.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation:

For maximum value of $\frac{x}{y}$, we take maximum value of x and minimum value of y ,

$$\text{i.e., Maximum value of } \left(\frac{x}{y}\right) = \frac{10}{5} = 2$$

Similarly, minimum value of $\left(\frac{x}{y}\right) = \frac{3}{15} = \frac{1}{5}$

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation:

Assertion: Since, greatest integer $[x]$ gives only integer value.

But $f(x) = [x] + x$ gives all real values and there is no repeated value of $f(x)$ for any value of x .

Hence, $f(x)$ is one-one and onto.

Section B

21. Let $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$
 $\Rightarrow \cos y = \frac{\sqrt{3}}{2}$
 $\Rightarrow \cos y = \cos \frac{\pi}{6}$
 $\Rightarrow y = \frac{\pi}{6}$

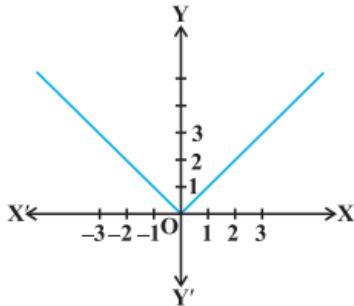
Since, the principal value branch of \cos^{-1} is $[0, \pi]$.

Therefore, principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

OR

$$\begin{aligned} \tan^{-1}\sqrt{3} - \sec^{-1}(-2) &= \tan^{-1}\sqrt{3} - [\pi - \sec^{-1}2] \\ &= \frac{\pi}{3} - \pi + \cos^{-1}\left(\frac{1}{2}\right) \\ &= -\frac{2\pi}{3} + \frac{\pi}{3} = -\frac{\pi}{3} \end{aligned}$$

22. From the graph of the given function



We know that $f(x) \geq 0, \forall x \in \mathbb{R}$

and $f(x) = 0$ if $x = 0$

Therefore, the function f has a minimum value '0' and the point of minimum value of f is $x = 0$. Also, the graph clearly shows that f has no maximum value in \mathbb{R} and hence no point of the maximum value in \mathbb{R} .

23. Let $f(x) = x^4 - 62x^2 + ax + 9$

$$\Rightarrow f'(x) = 4x^3 - 124x + a$$

Since, $f(x)$ attains its maximum value at $x = 1$ in the interval $[0, 2]$, therefore $f'(1) = 0$

$$\therefore f'(1) = 4 - 124 + a = 0$$

$$\Rightarrow a - 120 = 0$$

$$\Rightarrow a = 120$$

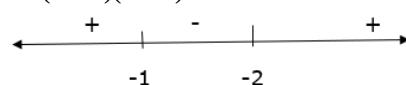
OR

Given, $f(x) = 2x^3 + 9x^2 + 12x + 15$

$$f'(x) = 6x^2 + 18x + 12$$

$$f'(x) = 6(x^2 + 3x + 2)$$

$$= 6(x + 2)(x + 1)$$



Therefore, function $f(x)$ is decreasing for $x \in [-1, -2]$ and increasing in $x \in (-\infty, -1) \cup (-2, \infty)$

24. $I = \int e^x (\sin x + \cos x) dx$

Now,

$$\text{Let } \sin x = f(x) \Rightarrow f'(x) = \cos x$$

We know that,

$$\int e^x \{f(x) + f'(x)\} dx = e^x f(x) + c$$

Thus,

$$\int e^x(\sin x + \cos x)dx = e^x \sin x + C$$

25. Given: $f(x) = -|x + 1| + 3$

We know that $-|x + 1| \leq 0$ for every $x \in \mathbb{R}$.

Therefore, $f(x) = -|x+1| + 3 \leq 3$ for every $x \in \mathbb{R}$.

Hence, the maximum value of f is attained when $|x+1| = 0$

$$|x + 1| = 0$$

$$\Rightarrow x = -1$$

$$\therefore \text{Maximum value of } f = f(-1) = -|-1 + 1| + 3 = 3$$

Hence, function f does not have a minimum value.

Section C

26. Let the given integral be,

$$I = \int \frac{x+1}{x^2+x+3} dx$$

$$\text{Let } x - 3 = \lambda \frac{d}{dx}(x^2 + 2x - 4) + \mu$$

$$= \lambda(2x + 2) + \mu$$

$$\Rightarrow x - 3 = (2\lambda)x + (2\lambda + \mu)$$

Comparing the coefficients of like powers of x ,

$$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$

$$2\lambda + \mu = -3 \Rightarrow 2\left(\frac{1}{2}\right) + \mu = -3$$

$$\mu = -4$$

$$\text{So, } I = \int \frac{\frac{1}{2}(2x+2)-4}{x^2+2x-4} dx$$

$$I = \frac{1}{2} \int \frac{2x+2}{x^2+2x-4} dx - 4 \int \frac{1}{x^2+2x+(1)^2-(1)^2-4} dx$$

$$I = \frac{1}{2} \int \frac{2x+2}{x^2+2x-4} dx - 4 \int \frac{1}{(x+1)^2-(\sqrt{5})^2} dx$$

$$I = \frac{1}{2} \log|x^2 + 2x - 4| - 4 \times \frac{1}{2\sqrt{5}} \log \left| \frac{x+1-\sqrt{5}}{x+1+\sqrt{5}} \right| + c \dots [\text{Since, } \int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + c]$$

$$I = \frac{1}{2} \log|x^2 + 2x - 4| - \frac{2}{\sqrt{5}} \log \left| \frac{x+1-\sqrt{5}}{x+1+\sqrt{5}} \right| + c$$

27. A white ball and a red ball can be drawn in three mutually exclusive ways:

- Selecting bag I and then drawing a white and a red ball from it
- Selecting bag II and then drawing a white and a red ball from it
- Selecting bag III and then drawing a white and a red ball from it

Consider the following events:

E_1 = Selecting bag I

E_2 = Selecting bag II

E_3 = Selecting bag II

A = Drawing a white and a red ball

It is given that one of the bags is selected randomly.

$$\therefore P(E_1) = \frac{1}{3}$$

$$P(E_2) = \frac{1}{3}$$

$$P(E_3) = \frac{1}{3}$$

Now,

$$P\left(\frac{A}{E_1}\right) = \frac{1C_1 \times 3C_1}{6C_2} = \frac{3}{15}$$

$$P\left(\frac{A}{E_2}\right) = \frac{2C_1 \times 1C_1}{4C_2} = \frac{2}{6}$$

$$P\left(\frac{A}{E_3}\right) = \frac{4C_1 \times 3C_1}{12C_2} = \frac{12}{66}$$

Using the law of total probability, we get

$$\text{Required probability} = P(A) = P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)$$

$$= \frac{1}{3} \times \frac{3}{15} + \frac{1}{3} \times \frac{2}{6} + \frac{1}{3} \times \frac{12}{66}$$

$$= \frac{1}{15} + \frac{1}{9} + \frac{2}{33}$$

$$= \frac{33+55+30}{495} = \frac{118}{495}$$

28. We can write the given function as,
$$\begin{cases} 2 \tan^{-1} x & , \text{ if } -1 < x < 1 \\ -\pi + 2 \tan^{-1} x & , \text{ if } x > 1 \\ \pi + 2 \tan^{-1} x & , \text{ if } x < -1 \end{cases}$$

$$\begin{aligned} \therefore I &= \int_0^{\sqrt{3}} \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx \\ \Rightarrow I &= \int_0^1 \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx + \int_1^{\sqrt{3}} \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx \quad [\text{Using additive property}] \\ \Rightarrow I &= \int_0^1 2 \tan^{-1} x dx + \int_1^{\sqrt{3}} (-\pi + 2 \tan^{-1} x) dx \\ \Rightarrow I &= \int_0^1 2 \tan^{-1} x dx + \int_1^{\sqrt{3}} -\pi dx + \int_1^{\sqrt{3}} 2 \tan^{-1} x dx \\ \Rightarrow I &= \left\{ \int_0^1 2 \tan^{-1} x dx + \int_1^{\sqrt{3}} 2 \tan^{-1} x dx \right\} - \pi \int_1^{\sqrt{3}} 1 \cdot dx \\ \Rightarrow I &= 2 \int_0^{\sqrt{3}} \tan^{-1} x dx - \pi \int_1^{\sqrt{3}} 1 \cdot dx \\ \Rightarrow I &= 2 \left[\left\{ x \tan^{-1} x \right\}_0^{\sqrt{3}} - \int_0^{\sqrt{3}} \frac{x}{1+x^2} dx \right] - \pi [x]_1^{\sqrt{3}} \\ \Rightarrow I &= 2 \left[\left\{ \sqrt{3} \tan^{-1} \sqrt{3} - 0 \right\} - \frac{1}{2} [\log(1+x^2)]_0^{\sqrt{3}} \right] - \pi(\sqrt{3} - 1) \\ \Rightarrow I &= 2 \left[\left\{ \sqrt{3} \tan^{-1} \sqrt{3} - 0 \right\} - \frac{1}{2} [\log(1+x^2)]_0^{\sqrt{3}} \right] - \pi(\sqrt{3} - 1) \\ \Rightarrow I &= \frac{2\pi}{3} \sqrt{3} - \log 4 - \pi(\sqrt{3} - 1) = \pi \left(1 - \frac{1}{\sqrt{3}} \right) - \log 4 \end{aligned}$$

OR

$$\text{Let } x = \lambda \frac{d}{dx} (x^2 + x + 1) + \mu. \text{ Then, } x = \lambda(2x + 1) + \mu$$

Comparing the coefficients of like powers of x, we get

$$1 = 2\lambda \text{ and } \lambda + \mu = 0 \Rightarrow \lambda = \frac{1}{2} \text{ and } \mu = -\lambda = -\frac{1}{2}$$

$$\begin{aligned} \therefore I &= \int \frac{x}{x^2+x+1} dx \\ \Rightarrow I &= \int \frac{1/2(2x+1)-1/2}{x^2+x+1} dx \end{aligned}$$

by using the values of λ , and μ ,

$$\begin{aligned} \Rightarrow I &= \frac{1}{2} \int \frac{2x+1}{x^2+x+1} dx - \frac{1}{2} \int \frac{1}{x^2+x+1} dx \\ \Rightarrow I &= \frac{1}{2} \int \frac{2x+1}{x^2+x+1} dx - \frac{1}{2} \int \frac{1}{(x^2+x+\frac{1}{4})+\frac{3}{4}} dx \\ \Rightarrow I &= \frac{1}{2} \int \frac{2x+1}{x^2+x+1} dx - \frac{1}{2} \int \frac{1}{\left(x+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx \\ \Rightarrow I &= \frac{1}{2} \log|x^2+x+1| - \frac{1}{2} \times \frac{1}{(\sqrt{3/2})} \tan^{-1} \left(\frac{x+1/2}{\sqrt{3/2}} \right) + C \\ \Rightarrow I &= \frac{1}{2} \log|x^2+x+1| - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c \end{aligned}$$

29. The given differential equation is,

$$\frac{dy}{dx} + 2y = \sin x$$

It is a linear differential equation. Comparing the equation with,

$$\frac{dy}{dx} + Py = Q$$

$$P = 2, Q = \sin x$$

$$\text{I.F.} = e^{\int pdx}$$

$$= e^{\int dx}$$

$$= e^{2x}$$

Solution of the equation is given by,

$$y \times (\text{I.F.}) = \int Q \times (\text{I.F.}) dx + c$$

$$y(e^{2x}) = \int \sin x \times (e^{2x}) dx + c$$

$$ye^{2x} = \frac{e^{2x}}{5} (2 \sin x - \cos x) + c$$

OR

We have differential equation,

$$\begin{aligned} x(x^2 - 1) \frac{dy}{dx} &= 1 \\ \Rightarrow \frac{dy}{dx} &= \frac{1}{x(x^2-1)} \\ \Rightarrow \frac{dy}{dx} &= \frac{1}{x(x-1)(x+1)} \quad [\because a^2 - b^2 = (a - b)(a + b)] \\ \Rightarrow dy &= \frac{dx}{x(x-1)(x+1)} \end{aligned}$$

Therefore, on integrating both sides, we get

$$\int dy = \int \frac{dx}{x(x-1)(x+1)}$$

$$\Rightarrow y = I + K \dots(i)$$

$$\text{where, } I = \int \frac{dx}{x(x-1)(x+1)}$$

By using partial fraction method,

$$\text{let } \frac{1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$

$$\Rightarrow 1 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)$$

$$\Rightarrow 1 = A(x^2 - 1) + B(x^2 + x) + C(x^2 - x)$$

Therefore, on comparing the coefficients of x^2 , x and constant terms from both sides, we get

$$A + B + C = 0$$

$$B - C = 0$$

$$\text{and } -A = 1$$

$$\Rightarrow A = -1$$

Therefore, on solving above equations, we get

$$A = -1, B = \frac{1}{2} \text{ and } C = \frac{1}{2},$$

$$\text{then } \frac{1}{x(x-1)(x+1)} = \frac{-1}{x} + \frac{1/2}{x-1} + \frac{1/2}{x+1}$$

Therefore, on integrating both sides w.r.t. x, we get

$$I = \int \frac{1}{x(x-1)(x+1)} dx = \int \frac{-1}{x} dx + \frac{1}{2} \int \frac{dx}{x-1} + \frac{1}{2} \int \frac{dx}{x+1}$$

$$\Rightarrow I = -\log|x| + \frac{1}{2}\log|x-1| + \frac{1}{2}\log|x+1|$$

Therefore, on putting the value of I in Eq. (i), we get

$$y = -\log|x| + \frac{1}{2}\log|x-1| + \frac{1}{2}\log|x+1| + K \dots(ii)$$

Also, we have, $y = 0$, when $x = 2$

Therefore, on putting $y = 0$ and $x = 2$ in Eq. (ii), we get

$$0 = -\log 2 + \frac{1}{2}\log 1 + \frac{1}{2}\log 3 + K$$

$$\Rightarrow K = \log 2 - \frac{1}{2}\log 1 - \frac{1}{2}\log 3$$

$$\Rightarrow K = \log 2 - \log \sqrt{3} \quad [:\log 1 = 0]$$

$$\Rightarrow K = \log \frac{2}{\sqrt{3}}$$

Therefore, on putting the value of K in Eq. (i), we get

$$y = -\log|x| + \frac{1}{2}\log|x-1| + \frac{1}{2}\log|x+1| + \log \frac{2}{\sqrt{3}}$$

which is the required solution.

30. First, we will convert the given inequations into equations, we obtain the following equations:

$$x + y = 8, x + 4y = 12, x = 3, y = 2 \text{ and solving we get values are as follows:}$$

The region represented by $x + y \geq 8$: The line $x + y = 8$ meets the coordinate axes at A(8,0) and B(0,8) respectively. By joining these points we obtain the line $x + y = 8$. Clearly (0,0) does not satisfy the inequation $x + y \geq 8$. So, the region in x y plane which does not contain the origin represents the solution set of the inequation $x + y \geq 8$

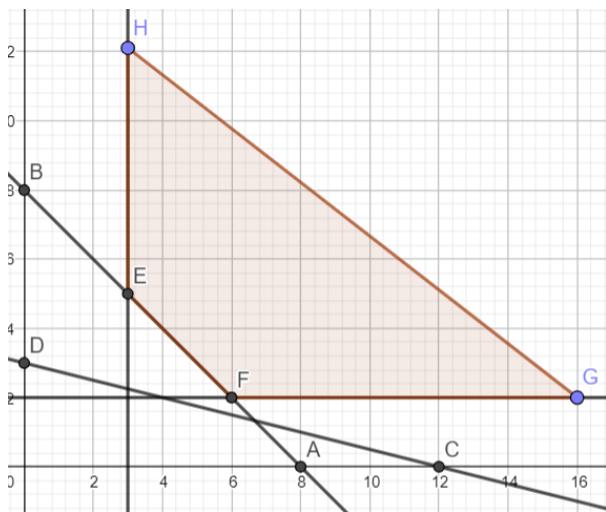
The region represented by $x + 4y \geq 12$:

The line $x + 4y = 12$ meets the coordinate axes at C(12,0) and D(0,3) respectively. By joining these points we obtain the line $x + 4y = 12$.

Clearly (0,0) satisfies the inequation $x + 4y \geq 12$. So, the region in x y plane which contains the origin represents the solution set of the inequation $x + 4y \geq 12$

The line $x = 3$ is the line that passes through the point (3,0) and is parallel to Y axis $x \geq 3$ is the region to the right of the line $x = 3$

The line $y = 2$ is the line that passes through the point (0,12) and is parallel to X axis. $y \geq 2$ is the region above the line $y = 2$



The corner points of the feasible region are E(3,5) and F(6,2)

The values of Z at these corner points are as follows.

Corner point	$Z = 2x + 4y$
E(3, 5)	$2 \times 3 + 4 \times 5 = 26$
F(6, 2)	$2 \times 6 + 4 \times 2 = 20$

Therefore, the minimum value of objective function Z is 20 at point F(6,2). Hence, $x = 6$ and $y = 2$ is the optimal solution of the given LPP. Thus, the optimal value of objective function z is 20.

OR

First, we will convert the given inequations into equations, we obtain the following equations:

$$5x + y = 10, x + y = 6, x + 4y = 12, x = 0 \text{ and } y = 0$$

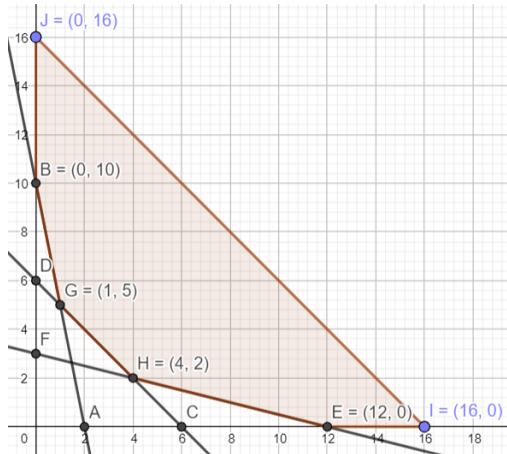
Region represented by $5x + y \geq 10$:

The line $5x + y = 10$ meets the coordinate axes at A(2,0) and B(0,10) respectively. By joining these points we obtain the line $5x + y = 10$. Clearly (0,0) does not satisfies the inequation $5x + y \geq 10$. So, the region in x y plane which does not contain the origin represents the solution set of the inequation $5x + y \geq 10$ Region represented by $x + y \geq 6$:

The line $x + y = 6$ meets the coordinate axes at C(6,0) and D(0,6) respectively. By joining these points we obtain the line $2x + 3y = 30$. Clearly (0,0) does not satisfies the inequation $x + y \geq 6$. So, the region which does not contain the origin represents the solution set of the inequation $2x + 3y \geq 30$ Region represented by $x + 4y \geq 12$ The line $x + 4y = 12$ meets the coordinate axes at E(12,0) and F(0,3) respectively. By joining these points we obtain the line

$x + 4y = 12$. Clearly (0,0) does not satisfies the inequation $x + 4y \geq 12$. So, the region which does not contain the origin represents the solution set of the inequation $x + 4y \geq 12$ Region represented by $x \geq 0$ and $y \geq 0$:

since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x \geq 0$, and $y \geq 0$. The feasible region determined by subject to the constraints are $5x + y \geq 10$, $x + y \geq 6$, $x + 4y \geq 12$, and the non-negative restrictions $x \geq 0$, and $y \geq 0$, are as follows.



The corner points of the feasible region are B(0,10), G(1,5), H(4,2) and E(12,0)

The values of objective function Z at these corner points are as follows.

Corner point Z = $3x + 2y$

$$B(0, 10) : 3 \times 0 + 3 \times 10 = 30$$

$$G(1, 5) : 3 \times 1 + 2 \times 5 = 13$$

$$H(4, 2) : 3 \times 4 + 2 \times 2 = 16$$

$$B(12, 0) : 3 \times 12 + 2 \times 0 = 36$$

Therefore, the minimum value of Z is 13 at the point G(1,5) . Hence, x = 1 and y = 5 is the optimal solution of the given LPP.

The optimal value of objective function Z is 13.

31. Given, $x = a \left(\cos t + \log \tan \frac{t}{2} \right) \dots \dots \dots \text{(i)}$

and $y = a \sin t \dots \dots \dots \text{(ii)}$

Therefore, on differentiating both sides w.r.t t, we get,

$$\begin{aligned} \frac{dx}{dt} &= a \left[\frac{d}{dt} (\cos t) + \frac{d}{dt} \log \tan \frac{t}{2} \right] \\ &= a \left[-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt} \left(\tan \frac{t}{2} \right) \right] \quad [\text{by using chain rule of derivative}] \\ &= a \left[-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt} \left(\frac{t}{2} \right) \right] \\ &= a \left[-\sin t + \frac{1}{\tan \frac{t}{2}} \times \sec^2 \frac{t}{2} \times \frac{1}{2} \right] \\ &= a \left[-\sin t + \frac{1}{\frac{\sin t/2}{\cos t/2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right] \\ &= a \left[-\sin t + \frac{1}{2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}} \right] \\ &= a \left[-\sin t + \frac{1}{\sin 2t} \right] \quad [\because \sin 2\theta = 2 \sin \theta \cos \theta] \\ &= a \left(\frac{1 - \sin^2 t}{\sin t} \right) \\ &\Rightarrow \frac{dx}{dt} = a \left(\frac{\cos^2 t}{\sin t} \right) \quad [\because 1 - \sin^2 \theta = \cos^2 \theta] \dots \dots \dots \text{(iii)} \end{aligned}$$

Again, on differentiating both sides of (ii) w.r.t t, we get,

$$\frac{dy}{dt} = a \cos t \dots \dots \dots \text{(iv)}$$

$$\begin{aligned} \text{Therefore, } \frac{dy}{dx} &= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a \cos t}{a \left(\frac{\cos^2 t}{\sin t} \right)} \quad [\text{from Eqs(iii) and (iv)}] \\ &= \frac{a \cos t}{a \cos^2 t} \times \sin t = \tan t \end{aligned}$$

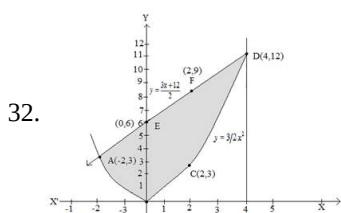
Therefore, on differentiating both sides of above equation w.r.t x, we get,

$$\begin{aligned} \frac{d}{dx} \left(\frac{dy}{dx} \right) &= \frac{d}{dx} (\tan t) \\ &= \frac{d}{dt} (\tan t) \frac{dt}{dx} \quad \left[\because \frac{d}{dx} f(t) = \frac{d}{dt} f(t) \cdot \frac{dt}{dx} \right] \\ &\Rightarrow \frac{d^2 y}{dx^2} = \sec^2 t \times \frac{\sin t}{a \cos^2 t} \quad [\text{From Eq.(iii)}] \\ &\Rightarrow \frac{d^2 y}{dx^2} = \frac{\sin t \sec^4 t}{a} \end{aligned}$$

Therefore, on putting $t = \frac{\pi}{3}$, we get,

$$\begin{aligned} \left[\frac{d^2 y}{dx^2} \right]_{t=\frac{\pi}{3}} &= \frac{\sin \frac{\pi}{3} \times \sec^4 \frac{\pi}{3}}{a} = \frac{\frac{\sqrt{3}}{2} \times (2)^4}{a} \\ &= \frac{8\sqrt{3}}{a} \end{aligned}$$

Section D



32.

$$4y = 3x^2 \dots \dots \text{(1)}$$

$$2y = 3x + 12 \dots \dots \text{(2)}$$

$$\text{From (2), } y = \frac{3x+12}{2}$$

Using this value of y in (1), we get,

$$x^2 - 6x - 8 = 0$$

$$\Rightarrow (x + 2)(x - 4) = 0$$

$$\Rightarrow x = -2, 4$$

From (2),

When, $x = -2, y = 3$

When, $x = 4, y = 12$

Thus, points of intersection are, $(-2, 3)$ and $(4, 12)$.

$$\text{Area} = \int_{-2}^4 \frac{3x+12}{2} dx - \int_{-2}^4 \frac{3}{4}x^2 dx$$

$$= \frac{1}{2} \left[\frac{3x^2}{2} + 12x \right]_{-2}^4 - \frac{3}{4} \left[\frac{x^3}{3} \right]_{-2}^4$$

$$= \frac{1}{2} [(24 + 48) - (6 - 24)] - \frac{1}{4} [64 - (-8)]$$

$$= 45 - 18 = 27 \text{ sq units.}$$

33. We observe the following properties of relation R .

Reflexivity: For any $a \in \mathbb{N}$

$$a - a = 0 = 0 \times n$$

$\Rightarrow a - a$ is divisible by n

$$\Rightarrow (a, a) \in R$$

Thus, $(a, a) \in R$ for all $a \in \mathbb{Z}$. So, R is reflexive on \mathbb{Z}

Symmetry: Let $(a, b) \in R$. Then,

$$(a, b) \in R$$

$\Rightarrow (a - b)$ is divisible by n

$$\Rightarrow (a - b) = np \text{ for some } p \in \mathbb{Z}$$

$$\Rightarrow b - a = n(-p)$$

$\Rightarrow b - a$ is divisible by n $[\because p \in \mathbb{Z} \Rightarrow -p \in \mathbb{Z}]$

$$\Rightarrow (b, a) \in R$$

Thus, $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in \mathbb{Z}$.

So, R is symmetric on \mathbb{Z} .

Transitivity: Let $a, b, c \in \mathbb{Z}$ such that $(a, b) \in R$ and $(b, c) \in R$. Then,

$$(a, b) \in R$$

$\Rightarrow (a - b)$ is divisible by n

$$\Rightarrow a - b = np \text{ for some } p \in \mathbb{Z}$$

and, $(b, c) \in R$

$\Rightarrow (b - c)$ is divisible by n

$$\Rightarrow b - c = nq \text{ for some } q \in \mathbb{Z}$$

$\therefore (a, b) \in R$ and $(b, c) \in R$

$$\Rightarrow a - b = np \text{ and } b - c = nq$$

$$\Rightarrow (a - b) + (b - c) = np + nq$$

$$\Rightarrow a - c = n(p + q)$$

$\Rightarrow a - c$ is divisible by n $[\because p, q \in \mathbb{Z} \Rightarrow p + q \in \mathbb{Z}]$

$$\Rightarrow (a, c) \in R$$

Thus, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in \mathbb{Z}$.

OR

We observe the following properties of f .

Injectivity: Let $x, y \in R_0$ such that $f(x) = f(y)$. Then,

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f : R_0 \rightarrow R_0$ is one-one.

Surjectivity: Let y be an arbitrary element of R_0 (co-domain) such that $f(x) = y$. Then,

$$f(x) = y \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{y}$$

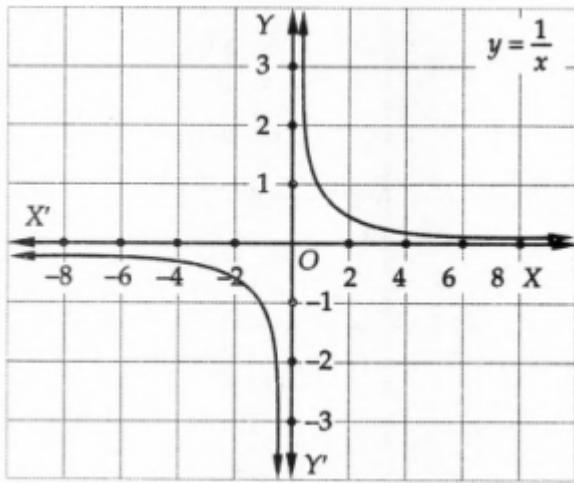
Clearly, $x = \frac{1}{y} \in R_0$ (domain) for all $y \in R_0$ (co-domain).

Thus, for each $y \in R_0$ (co-domain) there exists $x = \frac{1}{y} \in R_0$ (domain) such that $f(x) = \frac{1}{x} = y$

So, $f : R_0 \rightarrow R_0$ is onto.

Hence, $f : R_0 \rightarrow R_0$ is one-one onto.

This is also evident from the graph of $f(x)$ as shown in fig.



Let us now consider $f: N \rightarrow R_0$ given by $f(x) = \frac{1}{x}$

For any $x, y \in N$, we find that

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f: N \rightarrow R_0$ is one-one.

We find that $\frac{2}{3}, \frac{3}{5}$ etc. in co-domain R_0 do not have their pre-image in domain N . So, $f: N \rightarrow R_0$ is not onto.

Thus, $f: N \rightarrow R_0$ is one-one but not onto.

34. Given: Matrix $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$

$$\therefore |A| = \begin{vmatrix} 3 & 7 \\ 2 & 5 \end{vmatrix} = 15 - 14 = 1 \neq 0$$

$$\therefore A^{-1} = \frac{1}{|A|} \text{adj. } A = \frac{1}{1} \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

$$\text{Matrix } B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$

$$\therefore |B| = \begin{vmatrix} 6 & 8 \\ 7 & 9 \end{vmatrix} = 54 - 56 = -2 \neq 0$$

$$\therefore B^{-1} = \frac{1}{|B|} \text{adj. } B = \frac{1}{-2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$$

$$\text{Now } AB = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix} = \begin{bmatrix} 18 + 49 & 24 + 63 \\ 12 + 35 & 16 + 45 \end{bmatrix} = \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

$$\therefore |AB| = \begin{vmatrix} 67 & 87 \\ 47 & 61 \end{vmatrix} = 67(61) - 87(47) = 4087 - 4089 = -2 \neq 0$$

$$\text{Now L.H.S.} = (AB)^{-1} = \frac{1}{|AB|} \text{adj. } (AB) = \frac{1}{-2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix} \dots \text{(i)}$$

$$\text{R.H.S.} = B^{-1}A^{-1} = \frac{1}{-2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

$$= \frac{1}{-2} \begin{bmatrix} 45 + 16 & -63 - 24 \\ -35 - 12 & 49 + 18 \end{bmatrix}$$

$$= \frac{1}{-2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix} \dots \text{(ii)}$$

\therefore From eq. (i) and (ii), we get

L.H.S. = R.H.S.

$$\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$$

35. Here, it is given that

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$

$$\vec{r} = (4\hat{i} + \hat{j}) + \mu(5\hat{i} + 2\hat{j} + \hat{k})$$

Here,

$$\vec{a}_1 = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\vec{b}_1 = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\vec{a}_2 = 4\hat{i} + \hat{j}$$

$$\vec{b}_2 = 5\hat{i} + 2\hat{j} + \hat{k}$$

Thus,

$$\begin{aligned}\vec{b}_1 \times \vec{b}_2 &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 5 & 2 & 1 \end{vmatrix} \\ &= \hat{i}(3-8) - \hat{j}(2-20) + \hat{k}(4-15) \\ \therefore \vec{b}_1 \times \vec{b}_2 &= -5\hat{i} + 18\hat{j} - 11\hat{k} \\ \therefore |\vec{b}_1 \times \vec{b}_2| &= \sqrt{(-5)^2 + 18^2 + (-11)^2} \\ &= \sqrt{25 + 324 + 121} \\ &= \sqrt{470}\end{aligned}$$

$$\begin{aligned}\vec{a}_2 - \vec{a}_1 &= (4-1)\hat{i} + (1-2)\hat{j} + (0-3)\hat{k} \\ \therefore \vec{a}_2 - \vec{a}_1 &= 3\hat{i} - \hat{j} - 3\hat{k}\end{aligned}$$

Now, we have

$$\begin{aligned}(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) &= (-5\hat{i} + 18\hat{j} - 11\hat{k}) \cdot (3\hat{i} - \hat{j} - 3\hat{k}) \\ &= ((-5) \times 3) + (18 \times (-1)) + ((-11) \times (-3)) \\ &= -15 - 18 + 33 \\ &= 0\end{aligned}$$

Thus, the distance between the given lines is

$$\begin{aligned}d &= \frac{|(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)|}{|\vec{b}_1 \times \vec{b}_2|} \\ \therefore d &= \frac{0}{\sqrt{470}}\end{aligned}$$

$\therefore d = 0$ units

As $d = 0$

Thus, the given lines intersect each other.

Now, to find a point of intersection, let us convert given vector equations into Cartesian equations.

For that putting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ in given equations,

$$\begin{aligned}\Rightarrow \vec{L}_1 : x\hat{i} + y\hat{j} + z\hat{k} &= (i + 2j + 3k) + \lambda(2i + 3j + 4k) \\ \Rightarrow \vec{L}_2 : x\hat{i} + y\hat{j} + z\hat{k} &= (4\hat{i} + \hat{j}) + \mu(5\hat{i} + 2\hat{j} + \hat{k}) \\ \Rightarrow \vec{L}_1 : (x-1)\hat{i} + (y-2)\hat{j} + (z-3)\hat{k} &= 2\lambda\hat{i} + 3\lambda\hat{j} + 4\lambda\hat{k} \\ \Rightarrow \vec{L}_2 : (x-4)\hat{i} + (y-1)\hat{j} + (z-0)\hat{k} &= 5\mu\hat{i} + 2\mu\hat{j} + \mu\hat{k} \\ \Rightarrow \vec{L}_1 : \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} &= \lambda \\ \therefore \vec{L}_2 : \frac{x-4}{5} = \frac{y-1}{2} = \frac{z-0}{1} &= \mu\end{aligned}$$

General point on L_1 is

$$x_1 = 2\lambda + 1, y_1 = 3\lambda + 2, z_1 = 4\lambda + 3$$

Suppose, $P(x_1, y_1, z_1)$ be point of intersection of two given lines.

Thus, point P satisfies the equation of line \vec{L}_2 .

$$\begin{aligned}\Rightarrow \frac{2\lambda+1-4}{5} &= \frac{3\lambda+2-1}{2} = \frac{4\lambda+3-0}{1} \\ \therefore \frac{2\lambda-3}{5} &= \frac{3\lambda+1}{2} \\ \Rightarrow 4\lambda-6 &= 15\lambda+5 \\ \Rightarrow 11\lambda &= -11 \\ \Rightarrow \lambda &= -1\end{aligned}$$

$$\text{Thus, } x_1 = 2(-1) + 1, y_1 = 3(-1) + 2, z_1 = 4(-1) + 3$$

$$\Rightarrow x_1 = -1, y_1 = -1, z_1 = -1$$

Therefore, point of intersection of given lines is $(-1, -1, -1)$.

OR

Here, it is given equations of lines:

$$L_1 : \frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$$

$$L_2 : \frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$$

Direction ratios of L_1 and L_2 are $(3, -1, 1)$ and $(-3, 2, 4)$ respectively.

Suppose general point on line L_1 is $P = (x_1, y_1, z_1)$

$$x_1 = 3s + 6, y_1 = -s + 7, z_1 = s + 4$$

and suppose general point on line L_2 is $Q = (x_2, y_2, z_2)$

$$x_2 = -3t, y_2 = 2t - 9, z_2 = 4t + 2$$

$$\begin{aligned} \therefore \vec{PQ} &= (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k} \\ &= (-3t - 3s - 6)i + (2t - 9 + s - 7)j + (4t + 2 - s - 4)k \\ \therefore \vec{PQ} &= (-3t - 3s - 6)\hat{i} + (2t + s - 16)\hat{j} + (4t - s - 2)\hat{k} \end{aligned}$$

Direction ratios of \vec{PQ} are $((-3t - 3s - 6), (2t + s - 16), (4t - s - 2))$

PQ will be the shortest distance if it is perpendicular to both the given lines

Thus, by the condition of perpendicularity,

$$\Rightarrow 3(-3t - 3s - 6) - 1(2t + s - 16) + 1(4t - s - 2) = 0 \text{ and}$$

$$\Rightarrow -3(-3t - 3s - 6) + 2(2t + s - 16) + 4(4t - s - 2) = 0$$

$$\Rightarrow -9t - 9s - 18 - 2t - s + 16 + 4t - s - 2 = 0 \text{ and}$$

$$9t + 9s + 18 + 4t + 2s + -32 + 16t - 4s - 8 = 0$$

$$\Rightarrow -7t - 11s = 4 \text{ and}$$

$$29t + 7s = -22$$

Solving above two equations, we obtain

$$t = 1 \text{ and } s = -1$$

therefore

$$P = (3, 8, 3) \text{ and } Q = (-3, -7, 6)$$

Now, distance between points P and Q is

$$\begin{aligned} d &= \sqrt{(3+3)^2 + (8+7)^2 + (3-6)^2} \\ &= \sqrt{(6)^2 + (15)^2 + (-3)^2} \\ &= \sqrt{36 + 225 + 9} \\ &= \sqrt{270} \\ &= 3\sqrt{30} \end{aligned}$$

Thus, the shortest distance between two given lines is

$$d = 3\sqrt{30} \text{ units}$$

Now, the equation of the line passing through points P and Q is

$$\begin{aligned} \frac{x-x_1}{x_1-x_2} &= \frac{y-y_1}{y_1-y_2} = \frac{z-z_1}{z_1-z_2} \\ \therefore \frac{x-3}{3+3} &= \frac{y-8}{8+7} = \frac{z-3}{3-6} \\ \therefore \frac{x-3}{6} &= \frac{y-8}{15} = \frac{z-3}{-3} \\ \therefore \frac{x-3}{2} &= \frac{y-8}{5} = \frac{z-3}{-1} \text{ thus, the equation of the line of the shortest distance between two given lines is} \\ \frac{x-3}{2} &= \frac{y-8}{5} = \frac{z-3}{-1} \end{aligned}$$

Section E

36. i. Let E_1 : Ajay (A) is selected, E_2 : Ramesh (B) is selected, E_3 : Ravi (C) is selected

Let A be the event of making a change

$$P(E_1) = \frac{4}{7}, P(E_2) = \frac{1}{7}, P(E_3) = \frac{2}{7}$$

$$P(A/E_1) = 0.3, P(A/E_2) = 0.8, P(A/E_3) = 0.5$$

$$\begin{aligned} P(E_1/A) &= \frac{P(E_1) \cdot P(A/E_1)}{P(E_1) \cdot P(A/E_1) + P(E_2) \cdot P(A/E_2) + P(E_3) \cdot P(A/E_3)} \\ &= \frac{\frac{4}{7} \times 0.3}{\frac{4}{7} \times 0.3 + \frac{1}{7} \times 0.8 + \frac{2}{7} \times 0.5} = \frac{\frac{1.2}{7}}{\frac{1.2}{7} + \frac{0.8}{7} + \frac{1}{7}} = \frac{\frac{1.2}{7}}{\frac{3}{7}} \\ &= \frac{1.2}{3} = \frac{12}{30} = \frac{2}{5} \end{aligned}$$

ii. Let E_1 : Ajay (A) is selected, E_2 : Ramesh (B) is selected, E_3 : Ravi (C) is selected

Let A be the event of making a change

$$P(E_1) = \frac{4}{7}, P(E_2) = \frac{1}{7}, P(E_3) = \frac{2}{7}$$

$$P(A/E_1) = 0.3, P(A/E_2) = 0.8, P(A/E_3) = 0.5$$

$$\begin{aligned}
P(E_2/A) &= \frac{P(E_1) \cdot P(A/E_1)}{P(E_1) \cdot P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3)} \\
&= \frac{\frac{1}{7} \times 0.8}{\frac{4}{7} \times 0.3 + \frac{1}{7} \times 0.8 + \frac{2}{7} \times 0.5} = \frac{\frac{0.8}{7}}{\frac{1.2}{7} + \frac{0.8}{7} + \frac{1}{7}} = \frac{\frac{0.8}{7}}{\frac{3}{7}} \\
&= \frac{0.8}{3} = \frac{8}{30} = \frac{4}{15}
\end{aligned}$$

iii. Let E_1 : Ajay (A) is selected, E_2 : Ramesh (B) is selected, E_3 : Ravi (C) is selected

Let A be the event of making a change

$$P(E_1) = \frac{4}{7}, P(E_2) = \frac{1}{7}, P(E_3) = \frac{2}{7}$$

$$P(A/E_1) = 0.3, P(A/E_2) = 0.8, P(A/E_3) = 0.5$$

$$\begin{aligned}
P(E_3/A) &= \frac{P(E_1) \cdot P(A/E_1)}{P(E_1) \cdot P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3)} \\
&= \frac{\frac{2}{7} \times 0.5}{\frac{4}{7} \times 0.3 + \frac{1}{7} \times 0.8 + \frac{2}{7} \times 0.5} = \frac{\frac{1}{7}}{\frac{1.2}{7} + \frac{0.8}{7} + \frac{1}{7}} = \frac{1}{3}
\end{aligned}$$

OR

Let E_1 : Ajay (A) is selected, E_2 : Ramesh (B) is selected, E_3 : Ravi (C) is selected

Let A be the event of making a change

$$P(E_1) = \frac{4}{7}, P(E_2) = \frac{1}{7}, P(E_3) = \frac{2}{7}$$

$$P(A/E_1) = 0.3, P(A/E_2) = 0.8, P(A/E_3) = 0.5$$

Ramesh or Ravi

$$\Rightarrow P(E_2/A) + P(E_3/A) = \frac{4}{15} + \frac{1}{3} = \frac{9}{15} = \frac{3}{5}$$

37. i. Clearly, G be the centroid of $\triangle BCD$, therefore coordinates of G are

$$\left(\frac{3+4+2}{3}, \frac{0+3+3}{3}, \frac{1+6+2}{3} \right) = (3, 2, 3)$$

ii. Since, A $\equiv (0, 1, 2)$ and G $\equiv (3, 2, 3)$

$$\therefore \vec{AG} = (3 - 0)\hat{i} + (2 - 1)\hat{j} + (3 - 2)\hat{k} = 3\hat{i} + \hat{j} + \hat{k}$$

$$\Rightarrow |\vec{AG}|^2 = 3^2 + 1^2 + 1^2 = 9 + 1 + 1 = 11$$

$$\Rightarrow |\vec{AG}| = \sqrt{11}$$

iii. Clearly, area of $\triangle ABC = \frac{1}{2} |\vec{AB} \times \vec{AC}|$

$$\text{Here, } \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 - 0 & 0 - 1 & 1 - 2 \\ 4 - 0 & 3 - 1 & 6 - 2 \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & -1 \\ 4 & 2 & 4 \end{vmatrix}$$

$$= \hat{i}(-4 + 2) - \hat{j}(12 + 4) + \hat{k}(6 + 4) = -2\hat{i} - 16\hat{j} + 10\hat{k}$$

$$\therefore |\vec{AB} \times \vec{AC}| = \sqrt{(-2)^2 + (-16)^2 + 10^2}$$

$$= \sqrt{4 + 256 + 100} = \sqrt{360} = 6\sqrt{10}$$

$$\text{Hence, area of } \triangle ABC = \frac{1}{2} \times 6\sqrt{10} = 3\sqrt{10} \text{ sq. units}$$

OR

The length of the perpendicular from the vertex D on the opposite face

$$= |\text{Projection of } \vec{AD} \text{ on } \vec{AB} \times \vec{AC}|$$

$$= \left| \frac{(2\hat{i} + 2\hat{j}) \cdot (-2\hat{i} - 16\hat{j} + 10\hat{k})}{\sqrt{(-2)^2 + (-16)^2 + 10^2}} \right|$$

$$= \left| \frac{-4 - 32}{\sqrt{360}} \right| = \frac{36}{6\sqrt{10}} = \frac{6}{\sqrt{10}} \text{ units}$$

38. i. Given, r cm is the radius and h cm is the height of required cylindrical can.

Given that, volume of cylinder = $3l = 3000 \text{ cm}^3$ ($\because 1l = 1000 \text{ cm}^3$)

$$\Rightarrow \pi r^2 h = 3000 \Rightarrow h = \frac{3000}{\pi r^2}$$

Now, the surface area, as a function of r is given by

$$S(r) = 2\pi r^2 + 2\pi r h = 2\pi r^2 + 2\pi r \left(\frac{3000}{\pi r^2}\right)$$

$$= 2\pi r^2 + \frac{6000}{r}$$

$$\text{ii. Now, } S(r) = 2\pi r^2 + \frac{6000}{r}$$

$$\Rightarrow S'(r) = 4\pi r - \frac{6000}{r^2}$$

To find critical points, put $S'(r) = 0$

$$\Rightarrow \frac{4\pi r^3 - 6000}{r^2} = 0$$

$$\Rightarrow r^3 = \frac{6000}{4\pi} \Rightarrow r = \left(\frac{1500}{\pi}\right)^{1/3}$$

$$\text{Also, } S''(r)|_r = \sqrt[3]{\frac{1500}{\pi}} = 4\pi + \frac{12000 \times \pi}{1500}$$

$$= 4\pi + 8\pi = 12\pi > 0$$

Thus, the critical point is the point of minima.

iii. The cost of material for the tin can is minimized when $r = \sqrt[3]{\frac{1500}{\pi}}$ cm and the height is $\frac{3000}{\pi \left(\sqrt[3]{\frac{1500}{\pi}}\right)^2} = 2\sqrt[3]{\frac{1500}{\pi}}$ cm.

OR

We have, minimum surface area = $\frac{2\pi r^3 + 6000}{r}$

$$= \frac{2\pi \cdot \frac{1500}{\pi} + 6000}{\sqrt[3]{\frac{1500}{\pi}}} = \frac{9000}{7.8} = 1153.84 \text{ cm}^2$$

Cost of 1 m² material = ₹100

∴ Cost of 1 cm² material = ₹ $\frac{1}{100}$

∴ Minimum cost = ₹ $\frac{1153.84}{100}$ = ₹11.538